Package: pempi 1.0.0
pempi: Proportion Estimation with Marginal Proxy Information
A system contains easy-to-use tools for the conditional estimation of the prevalence of an emerging or rare infectious diseases using the methods proposed in Guerrier et al. (2023) <arxiv:2012.10745>.
Authors:
pempi_1.0.0.tar.gz
pempi_1.0.0.zip(r-4.5)pempi_1.0.0.zip(r-4.4)pempi_1.0.0.zip(r-4.3)
pempi_1.0.0.tgz(r-4.4-any)pempi_1.0.0.tgz(r-4.3-any)
pempi_1.0.0.tar.gz(r-4.5-noble)pempi_1.0.0.tar.gz(r-4.4-noble)
pempi_1.0.0.tgz(r-4.4-emscripten)pempi_1.0.0.tgz(r-4.3-emscripten)
pempi.pdf |pempi.html✨
pempi/json (API)
# Install 'pempi' in R: |
install.packages('pempi', repos = c('https://stephaneguerrier.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/stephaneguerrier/pempi/issues
- covid19_austria - COVID-19 Data from Statistics Austria
covidprevalencerare-infectious-diseasesstatistics
Last updated 10 months agofrom:df30200133. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 27 2024 |
R-4.5-win | OK | Oct 27 2024 |
R-4.5-linux | OK | Oct 27 2024 |
R-4.4-win | OK | Oct 27 2024 |
R-4.4-mac | OK | Oct 27 2024 |
R-4.3-win | OK | Oct 27 2024 |
R-4.3-mac | OK | Oct 27 2024 |
Exports:conditional_mleget_probmarginal_mlemoment_estimatorsim_Rssurvey_mleupdate_prevalence
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Compute MLE based on the full information R1, R2, R3 and R4. | conditional_mle |
COVID-19 Data from Statistics Austria | covid19_austria |
Compute sucess probabilities (tau_j's) | get_prob |
Compute (marginalized) MLE based on the partial information R1 and R3. | marginal_mle |
Compute moment-based estimator. | moment_estimator |
Simulate data (R, R0, R1, R2, R3 and R4) | sim_Rs |
Compute proportion in the survey sample (standard estimator) | survey_mle |
Update prevalence using new case prevalence rates | update_prevalence |