Package: pempi (via r-universe)

August 28, 2024

Type Package
Title Proportion Estimation with Marginal Proxy Information
Version 1.0.0
Date 2023-09-15
LazyData true
Maintainer Stéphane Guerrier < stef.guerrier@gmail.com>
Description A system contains easy-to-use tools for the conditional estimation of the prevalence of an emerging or rare infectious diseases using the methods proposed in Guerrier et al. (2023) <arxiv:2012.10745>.</arxiv:2012.10745>
Depends R (>= $4.0.0$)
License AGPL-3
RoxygenNote 7.2.3
Encoding UTF-8
Suggests knitr, rmarkdown
VignetteBuilder knitr
<pre>URL https://github.com/stephaneguerrier/pempi</pre>
BugReports https://github.com/stephaneguerrier/pempi/issues
Repository https://stephaneguerrier.r-universe.dev
RemoteUrl https://github.com/stephaneguerrier/pempi
RemoteRef HEAD
RemoteSha df30200133daec8fb681d55f7dd131f33b7073ce
Contents
conditional_mle

2 conditional_mle

Index		15
	update_prevalence	12
	survey_mle	11
	sim_Rs	10
	moment_estimator	8

conditional_mle

Compute MLE based on the full information R1, R2, R3 and R4.

Description

Proportion estimated using the MLE and confidence intervals based the asymptotic distribution of the estimator.

Usage

```
conditional_mle(
   R1 = NULL,
   R2 = NULL,
   R3 = NULL,
   R4 = NULL,
   n = R1 + R2 + R3 + R4,
   pi0,
   gamma = 0.05,
   alpha0 = 0,
   alpha = 0,
   beta = 0,
   V = NULL,
   ...
)
```

R1	A numeric that provides the number of participants in the survey sample that were tested positive with both (medical) testing devices (and are, thus, members of the sub-population).
R2	A numeric that provides the number of participants in the survey sample that are tested positive only with the first testing device (and are, thus, members of the sub-population).
R3	A numeric that provides the number of participants in the survey sample that are tested positive only with the second testing device.
R4	A numeric that provides the number of participants that are tested negative with the second testing device (and are either members of the sub-population and have tested negative with the first testing device or are not members of the sub- population).

conditional_mle 3

n	A numeric that provides the sample size. Default value $R1 + R2 + R3 + R4$. If this value is provided it is used to verify that $R1 + R2 + R3 + R4 = n$.
pi0	A numeric that provides the prevalence or proportion of people (in the whole population) who are positive, as measured through a non-random, but systematic sampling (e.g. based on medical selection).
gamma	A numeric that is used to compute a (1 - gamma) confidence region for the proportion. Default value is 0.05.
alpha0	A numeric that corresponds to the probability that a random participant has been incorrectly declared positive through the nontransparent procedure. In most applications, this probability is likely very close to zero. Default value is 0.
alpha	A numeric that provides the False Negative (FN) rate for the sample R. Default value is 0.
beta	A numeric that provides the False Positive (FP) rate for the sample R. Default value is \emptyset .
V	A numeric that corresponds to the average of squared sampling weights. Default value is NULL.
	Additional arguments.

Value

A cpreval object with the structure:

- estimate: Estimated proportion.
- sd: Estimated standard error of the estimator.
- ci_asym: Asymptotic confidence interval at the 1 gamma confidence level.
- gamma: Confidence level (i.e. 1 gamma) for confidence intervals.
- method: Estimation method (in this case mle).
- measurement: A vector with (alpha0, alpha, beta).
- beta0: Estimated false negative rate of the official procedure.
- ci_beta0: Asymptotic confidence interval (1 gamma confidence level) for beta0.
- boundary: A boolean variable indicating if the estimates falls at the boundary of the parameter space.
- pi0: Value of pi0 (input value).
- sampling: Type of sampling considered ("random" or "weighted").
- V: Average sum of squared sampling weights if weighted/stratified is used (otherwise NULL).
- n: Sample size.
- avar_beta0: Estimated asymptotic variance of beta0
- ...: Additional parameters.

Author(s)

Stephane Guerrier, Maria-Pia Victoria-Feser, Christoph Kuzmics

4 covid19_austria

Examples

```
# Samples without measurement error

X = sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, seed = 18)

conditional_mle(R1 = X$R1, R2 = X$R2, R3 = X$R3, R4 = X$R4, pi0 = X$pi0)

# With measurement error

X = sim_Rs(theta = 30/1000, pi0 = 10/1000, n = 1500, alpha0 = 0.001, alpha = 0.01, beta0 = 0.05, beta = 0.05, seed = 18)

conditional_mle(R1 = X$R1, R2 = X$R2, R3 = X$R3, R4 = X$R4, pi0 = X$pi0)

conditional_mle(R1 = X$R1, R2 = X$R2, R3 = X$R3, R4 = X$R4, pi0 = X$pi0, alpha0 = 0.001, alpha = 0.01, beta = 0.05)
```

covid19_austria

COVID-19 Data from Statistics Austria

Description

Data collected in Austria in 2020 (see e.g. SORA, 2020; Kowarik et al., 2021, for more details), allowing to estimate COVID-19 prevalence.

Usage

```
covid19_austria
```

Format

A matrix with 2290 rows and 3 variables:

- Y Binary variable, 1 if participant i is tested positive in the survey sample, 0 otherwise.
- **Z** Binary variable, 1 if participant i was declared positive with the official procedure, 0 otherwise. **weights** Sampling weights.

Source

Statistics Austria. 2020. "Prävalenz von SARS-CoV-2-Infektionen liegt bei 0.031."

get_prob 5

get_prob	Compute sucess probabilities (tau_j's)	
----------	--	--

Description

Compute joint probabilities of P(W = j, Y = k) for j, k = 0, 1.

Usage

```
get_prob(theta, pi0, alpha, beta, alpha0)
```

Arguments

theta	A numeric that provides the true prevalence of a given disease.
pi0	A numeric that provides the prevalence or proportion of people (in the whole population) who are positive, as measured through a non-random, but systematic sampling (e.g. based on medical selection).
alpha	A numeric that provides the False Negative (FN) rate for the sample R.
beta	A numeric that provides the False Positive (FP) rate for the sample R.
alpha0	A numeric that corresponds to the probability that a random participant has been incorrectly declared positive through the nontransparent procedure. In most applications, this probability is likely very close to zero.

Value

A vector containing tau1, tau2, tau3 and tau4.

Author(s)

Stephane Guerrier

```
prob1 = get_prob(theta = 0.02, pi0 = 0.01, alpha = 0, beta = 0, alpha0 = 0)
prob1
sum(prob1)

prob2 = get_prob(theta = 0.02, pi0 = 0.01, alpha = 0.001, beta = 0, alpha0 = 0.001)
prob2
sum(prob2)
```

6 marginal_mle

marginal_mle $Compute\ (marginalized)\ MLE\ based\ on\ the\ partial\ information\ R1\ an$ $R3.$	nd
---	----

Description

Proportion estimated using the MLE and confidence intervals based the asymptotic distribution of the estimator.

Usage

```
marginal_mle(
   R1,
   R3,
   n,
   pi0,
   gamma = 0.05,
   alpha = 0,
   beta = 0,
   alpha0 = 0,
   V = NULL,
   ...
)
```

R1	A numeric that provides the number of participants in the survey sample that were tested positive with both (medical) testing devices (and are, thus, members of the sub-population).
R3	A numeric that provides the number of participants in the survey sample that are tested positive only with the second testing device.
n	A numeric that provides the sample size.
pi0	A numeric that provides the prevalence or proportion of people (in the whole population) who are positive, as measured through a non-random, but systematic sampling (e.g. based on medical selection).
gamma	A numeric that is used to compute a $(1$ - gamma) confidence region for the proportion. Default value is 0.05 .
alpha	A numeric that provides the False Negative (FN) rate for the sample R. Default value is \emptyset .
beta	A numeric that provides the False Positive (FP) rate for the sample R. Default value is \emptyset .
alpha0	A numeric that corresponds to the probability that a random participant has been incorrectly declared positive through the nontransparent procedure. In most applications, this probability is likely very close to zero. Default value is 0.

marginal_mle 7

A numeric that corresponds to the average of squared sampling weights. Default value is NULL and for the moment this method is currently only implemented for random sampling.

.. Additional arguments.

Value

٧

A cpreval object with the structure:

- estimate: Estimated proportion.
- sd: Estimated standard error of the estimator.
- ci_asym: Asymptotic confidence interval at the 1 gamma confidence level.
- gamma: Confidence level (i.e. 1 gamma) for confidence intervals.
- method: Estimation method (in this case marginal mle).
- measurement: A vector with (alpha0, alpha, beta).
- beta0: Estimated false negative rate of the official procedure.
- ci_beta0: Asymptotic confidence interval (1 gamma confidence level) for beta0.
- boundary: A boolean variable indicating if the estimates falls at the boundary of the parameter space.
- pi0: Value of pi0 (input value).
- sampling: Type of sampling considered ("random" or "weighted").
- V: Average sum of squared sampling weights if weighted/stratified is used (otherwise NULL).
- n: Sample size.
- avar_beta0: Estimated asymptotic variance of beta0
- ...: Additional parameters

Author(s)

Stephane Guerrier, Maria-Pia Victoria-Feser, Christoph Kuzmics

```
# Samples without measurement error

X = sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, seed = 18)

conditional_mle(R1 = X$R1, R2 = X$R2, R3 = X$R3, R4 = X$R4, n = X$n, pi0 = X$pi0)

# With measurement error

X = sim_Rs(theta = 30/1000, pi0 = 10/1000, n = 1500, alpha0 = 0.001, alpha = 0.01, beta0 = 0.05, beta = 0.05, seed = 18)

marginal_mle(R1 = X$R1, R3 = X$R3, n = X$n, pi0 = X$pi0)

marginal_mle(R1 = X$R1, R3 = X$R3, n = X$n, pi0 = X$pi0, alpha0 = 0.001, alpha = 0.01, beta0 = 0.05, beta = 0.05)
```

8 moment_estimator

moment_estimator

Compute moment-based estimator.

Description

Proportion estimated using the moment-based estimator and confidence intervals based the asymptotic distribution of the estimator as well as the Clopper-Pearson approach.

Usage

```
moment_estimator(
  R3,
  n,
  pi0,
  gamma = 0.05,
  alpha = 0,
  beta = 0,
  alpha0 = 0,
  V = NULL,
  ...
)
```

R3	A numeric that provides the number of participants in the survey sample that are tested positive only with the second testing device.
n	A numeric that provides the sample size.
pi0	A numeric that provides the prevalence or proportion of people (in the whole population) who are positive, as measured through a non-random, but systematic sampling (e.g. based on medical selection).
gamma	A numeric that is used to compute a $(1$ - gamma) confidence region for the proportion. Default value is 0.05 .
alpha	A numeric that provides the False Negative (FN) rate for the sample R. Default value is 0.
beta	A numeric that provides the False Positive (FP) rate for the sample R. Default value is 0.
alpha0	A numeric that corresponds to the probability that a random participant has been incorrectly declared positive through the nontransparent procedure. In most applications, this probability is likely very close to zero. Default value is 0.
٧	A numeric that corresponds to the average of squared sampling weights. Default value is NULL.
• • •	Additional arguments.

moment_estimator 9

Value

A cpreval object with the structure:

- estimate: Estimated proportion.
- sd: Estimated standard error of the estimator.
- ci_asym: Asymptotic confidence interval at the 1 gamma confidence level.
- ci_cp: Confidence interval (1 gamma confidence level) based on the Clopper-Pearson approach.
- gamma: Confidence level (i.e. 1 gamma) for confidence intervals.
- method: Estimation method (in this case moment estimator).
- measurement: A vector with (alpha0, alpha, beta).
- beta0: Estimated false negative rate of the official procedure.
- ci_beta0: Asymptotic confidence interval (1 gamma confidence level) for beta0.
- boundary: A boolean variable indicating if the estimates falls at the boundary of the parameter space.
- pi0: Value of pi0 (input value).
- sampling: Type of sampling considered ("random" or "weighted").
- V: Average sum of squared sampling weights if weighted/stratified is used (otherwise NULL).
- n: Sample size.
- avar_beta0: Estimated asymptotic variance of beta0
- ...: Additional parameters.

Author(s)

Stephane Guerrier, Maria-Pia Victoria-Feser, Christoph Kuzmics

```
# Samples without measurement error
X = sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, seed = 18)
moment_estimator(R3 = X$R3, n = X$n, pi0 = X$pi0)

# With measurement error
X = sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, alpha0 = 0.001,
alpha = 0.01, beta = 0.05, seed = 18)
moment_estimator(R3 = X$R3, n = X$n, pi0 = X$pi0)
moment_estimator(R3 = X$R3, n = X$n, pi0 = X$pi0, alpha0 = 0.001,
alpha = 0.01, beta = 0.05)
```

10 sim_Rs

sim_Rs	Simulate data (R, R0, R1, R2, R3 and R4)	

Description

Simulation function for random variables of interest.

Usage

```
sim_Rs(theta, pi0, n, alpha0 = 0, alpha = 0, beta = 0, seed = NULL, ...)
```

Arguments

theta	A numeric that provides the true prevalence of a given disease.
pi0	A numeric that provides the prevalence or proportion of people (in the whole population) who are positive, as measured through a non-random, but systematic sampling (e.g. based on medical selection).
n	A numeric that corresponds to the sample size.
alpha0	A numeric that corresponds to the probability that a random participant has been incorrectly declared positive through the nontransparent procedure. In most applications, this probability is likely very close to zero. Default value is 0.
alpha	A numeric that provides the False Negative (FN) rate for the sample R. Default value is \emptyset .
beta	A numeric that provides the False Positive (FP) rate for the sample R. Default value is 0.
seed	A numeric that provides the simulation seed. Default value is NULL.
	Additional arguments.

Value

A cpreval_sim object (list) with the structure:

- R: the number of participants in the survey sample that were tested positive.
- R0: the number of participants in the survey sample that were tested positive with the first testing device (and are, thus, members of the sub-population).
- R1: the number of participants in the survey sample that were tested positive with both (medical) testing devices (and are, thus, members of the sub-population).
- R2: the number of participants in the survey sample that are tested positive only with the first testing device (and are, thus, members of the sub-population).
- R3: the number of participants in the survey sample that are tested positive only with the second testing device.
- R4: the number of participants that are tested negative with the second testing device (and are either members of the sub-population and have tested negative with the first testing device or are not members of the sub-population).

survey_mle 11

- n: the sample size.
- alpha: the False Negative (FN) rate for the sample R.
- beta: the False Positive (FP) rate for the sample R.
- alpha0: the alpha0 probability (as defined above).
- ...: additional arguments.

Author(s)

Stephane Guerrier

Examples

```
# Samples without measurement error
sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, seed = 18)
# With measurement error
sim_Rs(theta = 3/100, pi0 = 1/100, n = 1500, alpha0 = 0,
alpha = 0.01, beta = 0.05, seed = 18)
```

survey_mle

Compute proportion in the survey sample (standard estimator)

Description

Proportion estimated using the survey sample and confidence intervals based on the Clopper-Pearson and the standard asymptotic approach.

Usage

```
survey_mle(R, n, pi0 = 0, alpha = 0, beta = 0, gamma = 0.05, V = NULL, ...)
```

R	A numeric that provides the people of positive people in the sample.
n	A numeric that provides the sample size.
pi0	A numeric that provides the prevalence or proportion of people (in the whole population) who are positive, as measured through a non-random, but systematic sampling (e.g. based on medical selection). Default value is 0 and in this case this information is not used in the estimation procedure.
alpha	A numeric that provides the False Negative (FN) rate for the sample R. Default value is 0.
beta	A numeric that provides the False Positive (FP) rate for the sample R. Default value is 0.
gamma	A numeric that is used to compute a (1 - gamma) confidence region for the proportion. Default value is 0.05.
V	A numeric that corresponds to the average of squared sampling weights. Default value is NULL.
	Additional arguments.

12 update_prevalence

Value

A cpreval object with the structure:

- estimate: Estimated proportion.
- sd: Estimated standard error of the estimator.
- ci_asym: Asymptotic confidence interval at the 1 gamma confidence level.
- gamma: Confidence level (i.e. 1 gamma) for confidence intervals.
- method: Estimation method (in this case sample survey).
- measurement: A vector with (alpha0, alpha, beta).
- boundary: A boolean variable indicating if the estimates falls at the boundary of the parameter space.
- pi0: Value of pi0 (input value).
- sampling: Type of sampling considered ("random" or "weighted").
- V: Average sum of squared sampling weights if weighted/stratified is used (otherwise NULL).
- ...: Additional parameters.

Author(s)

Stephane Guerrier, Maria-Pia Victoria-Feser, Christoph Kuzmics

Examples

```
# Samples without measurement error
X = sim_Rs(theta = 30/1000, pi0 = 10/1000, n = 1500, seed = 18)
survey_mle(R = X$R, n = X$n)

# With measurement error
X = sim_Rs(theta = 30/1000, pi0 = 10/1000, n = 1500, alpha = 0.01, beta = 0.05, seed = 18)
survey_mle(R = X$R, n = X$n)
survey_mle(R = X$R, n = X$n, alpha = 0.01, beta = 0.05)
```

update_prevalence

Update prevalence using new case prevalence rates

Description

Updated prevalence and confidence intervals using new case prevalence rates

update_prevalence 13

Usage

```
update_prevalence(
  pi0_new,
  x,
  gamma = 0.05,
  print = NULL,
  plot = NULL,
  col_line = "#2e5dc1",
  col_ci = "#2E5DC133",
  ...
)
```

Arguments

pi0_new	A numeric or vector of new case prevalence rates
x	A cpreval object.
gamma	A numeric that used to compute a (1 - gamma) confidence region for the proportion. Default value is 0.05.
print	A boolean indicating whether or not the output should be print.
plot	A boolean indicating whether or not a plot should be made.
col_line	Color of the estimated prevalence.
col_ci	Color of the estimated prevalence confidence interval.
	Additional arguments.

Value

A matrix object whose columns corresponds to pi0, estimate, sd and CI.

Author(s)

Stephane Guerrier

```
# Austrian data (November 2020)
pi0 = 93914/7166167
data("covid19_austria")

# Weighted sampling
n = nrow(covid19_austria)
R1w = sum(covid19_austria$weights[covid19_austria$Y == 1 & covid19_austria$Z == 1])
R2w = sum(covid19_austria$weights[covid19_austria$Y == 0 & covid19_austria$Z == 1])
R3w = sum(covid19_austria$weights[covid19_austria$Y == 1 & covid19_austria$Z == 0])
R4w = sum(covid19_austria$weights[covid19_austria$Y == 0 & covid19_austria$Z == 0])

# Assumed measurement errors
alpha0 = 0
alpha = 1/100
```

14 update_prevalence

Index